RECENT ARTICLES

Does the ability to predict the future—perhaps with quantum help—define the fundamental difference between living and inanimate matter?

Watching particles fly through an interferometer might help to unveil higher-order weirdness behind quantum theory.

Is the simplest answer always the best? Connecting Medieval monks to computational complexity, using the branch of mathematics known as category theory.

An intrepid physicist attempts to climb into the core of black hole.

Entropy could explain why nature chose to play by quantum rules.

FQXI ARTICLE

October 22, 2014

Heart of Darkness

An intrepid physicist attempts to climb into the core of black hole.

FQXi Awardees: Veronika Hubeny

July 23, 2014

Veronika Hubeny scales new heights in black hole research

Durham University

So, she was pondering something about the fundamental nature of time at five years of age? She laughs again, and says, "It’s of course a completely ill-defined question, and completely nonsensical, but I was very prone to getting intrigued by this sort of thing."

This might explain why Hubeny, who is now a physicist at Durham University in the UK, has spent her career asking fundamental questions about the nature of space and time. For example, where does the 4-dimensional fabric of spacetime—which Einstein told us pervades the universe—come from? Does it emerge from something more fundamental? No answers for such questions are forthcoming from his theory of gravity, general relativity, which is typically used to calculate how spacetime warps around massive bodies, like stars, but has little to say about what happens to it on the tiny scales inhabited by quantum particles. It is possible that when you zoom down even further to look at spacetime below this level, it breaks down. "We anticipate that classical spacetime, the continuous manifold of space and time, ceases to make sense at some small distances," says Hubeny.

Our notion of spacetime also disintegrates, according to general relativity, in the center of a black hole, known as a "singularity." What happens to an observer who falls into the black hole and encounters the singularity? "If you imagine a real life observer, that observer would die, but what happens to the stuff they are composed of?" says Hubeny. The answer could help physicists hunting for a theory of quantum gravity, which combines general relativity with the laws of quantum mechanics that dominate on small scales. "In general relativity, that stuff would end at the singularity, but in the full quantum gravity, something has to happen," Hubeny says.

I never had the feeling

growing up that there are

questions you don’t ask.

growing up that there are

questions you don’t ask.

- Veronika Hubeny

Some real-life giants of physics have influenced her quest to answer such questions. Just when she started on her PhD at the University of California, Santa Barbara (UCSB), something seminal happened in field of string theory, the branch of physics that posits that elementary particles are composed of tiny loops of energy that vibrate in multiple dimensions. Physicist Juan Maldacena came up with a now eponymous conjecture tying together the mathematical descriptions of gravity and quantum field theory, using strings.

Maldecena pictured a special kind of space that exists in 5 dimensions (a maximally-symmetric negatively curved spacetime), which contains strings, black holes, and gravity. On the 4-dimensional surface of this space, live quantum particles—sans gravity—obeying the laws of quantum field theory. Maldacena’s striking claim was that the string theory describing what happens within this 5-dimensional space, is mathematically equivalent to a 4-dimensional quantum field theory describing what happens on the surface. "Such theories are referred to as holographic correspondences, because one side of the duality lives in fewer dimensions," says Hubeny. (See "The Cosmic Hologram.")

To answer questions about the emergence of spacetime and the fate of someone falling into a black hole, physicists like Hubeny want to solve the equations of the 5-dimensional string theory that describe the gravity-filled space within the volume. Unfortunately, however, they are quite intractable. Here’s where the duality comes in: You first recast the questions using the non-gravitational field theory of the surface, and solve them without having to deal with weird black-hole singularities. Then you translate the answer back to the 5-dimensional theory. Of course, it’s easier said than done. "The basic prerequisite is that we need to understand the dictionary," says Hubeny. "How do you translate from the string theory to the field theory side and vice-versa?"

Disentangling Spacetime

One way to translate between the two has become clear in recent years: There are hints, from work done by Leonard Susskind, Maldacena, and FQXi grant winner Mark Van Raamsdonk and others, that the geometry of spacetime within the 5-dimensional volume is related to quantum entanglement, on the 4-dimensional boundary surface, which links distant particles or regions so that their properties become permanently intertwined. (See "The Quantum Dictionary.") "You can sort of build spacetime by entangling the regions or you can decrease the amount of spacetime by disentangling,” says Hubeny.

In a similar vein, Hubeny, along with Mukund Rangamani, also at Durham, and Tadashi Takayanagi, at Kyoto University in Japan, have been investigating a boundary quantity called the "entanglement entropy"—a measure of the number of independent physical parameters in the field theory for that region. In particular, they have shown that this quantity is related to the area of an "extremal" surface in the bulk volume.

Beyond the Horizon

Could a mathematical trick help astrophysicists peer into the heart of a black hole?

Credit: NASA, and M. Weiss (Chandra X -ray Center)

So, now, we have a boundary quantity, the entanglement entropy, that can be used to study the area of the extremal surface inside the bulk, which in turn is related to the geometry of the bulk. "Particularly interesting bits of geometry are where it starts breaking down," says Hubeny, such as in the interior of a black hole. While Hubeny had shown in 2012 that an extremal surface cannot penetrate a static black hole, she and her student Henry Maxfield conjectured that it just might penetrate a dynamically evolving black hole. The question was: can an extremal surface get to the black hole singularity? "If they penetrated arbitrarily close, we could hope to use entanglement entropy directly to study how the singularity gets resolved," says Hubeny.

However, their hopes were dashed. Their calculations showed that, unfortunately, extremal surfaces do not get close enough to the singularity (arXiv:1312.6887v3). "So, unsurprisingly, we as a community have to work harder to tease out the most interesting bits," says Hubeny.

We could hope to use

entanglement entropy

directly to study how

the singularity gets

resolved.

entanglement entropy

directly to study how

the singularity gets

resolved.

- Veronika Hubeny

Joe Polchinksi, also of UCSB, agrees. "Entanglement is the most mysterious part of quantum mechanics," he says. "Hubeny has contributed many important insights to this subject, especially concerning the black hole interior and its spacetime singularity."

Understanding the innards of a black hole and its spacetime singularity is quite a mountain to climb, but Hubeny is not deterred. She’s happy about her choice to pursue physics rather than become a mountain guide. "It was clear to me that my questions wouldn’t let me go," she says. Mountains, however, remain dear to her. "I like mountains even more than before."

Comment on this Article

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

function ValidatePostText_main () {
form = document.addPostForm_main;
if (form.postText_main.value == '') {
alert ("The post contains no text");
return false;
}
else {
return true;
}
}

**Your name:**
(optional)

**Important:** In order to combat spam, please select the letter in this menu between 'M' and 'O':
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Recent Comments

read all article comments

Please read the important Introduction that governs your participation in this community. Inappropriate language will not be tolerated and posts containing such language will be deleted. Otherwise, this is a free speech Forum and all are welcome!

Please enter the text of your post, then click the "Submit New Post" button below. You may also optionally add file attachments below before submitting your edits.

HTML tags are not permitted in posts, and will automatically be stripped out. Links to other web sites are permitted. For instructions on how to add links, please read the link help page.

You may use superscript (10

^{100}) and subscript (A_{2}) using [sup]...[/sup] and [sub]...[/sub] tags.You may use bold (

**important**) and italics (*emphasize*) using [b]...[/b] and [i]...[/i] tags.You may also include LateX equations into your post.

Insert LaTeX Equation
[hide]

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

LaTeX equations may be displayed in FQXi Forum posts by including them within [equation]...[/equation] tags. You may type your equation directly into your post, or use the LaTeX Equation Preview feature below to see how your equation will render (this is recommended).

For more help on LaTeX, please see the LaTeX Project Home Page.

LaTeX Equation Preview

preview equation

clear equation

insert equation into post at cursor

Attachments
[hide]

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

You may optionally attach up to two documents to your post. To add an attachment, use the following feature to browse your computer and select the file to attach. The maximum file size for attachments is 1MB.

Once you're done adding file attachments, click the "Submit New Post" button to add your post.

STUART MARONGWE wrote on August 17, 2014

Perhaps this paper might help in your quest http://www.worldscientific.com/doi/abs/10.1142/S0219887814500595?queryID=%24%7BresultBean.queryID%7D

Perhaps this paper might help in your quest http://www.worldscientific.com/doi/abs/10.1142/S0219887814500595?queryID=%24%7BresultBean.queryID%7D

read all article comments