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Abstract 
Quantum non-locality can be difficultly understood and explained starting from the idea that the space-
time manifold characteristic of special relativity is a fundamental entity: it is due to a quantum potential 
which is equivalent to a space-like, instantaneous action between the particles into consideration. In 
virtue of the features of quantum potential, a new order must be introduced to understand quantum 
phenomena, in particular quantum non-locality. One can say that in this new order subatomic particles 
are instantaneously connected through space which functions as an immediate information medium 
between them. Since to interpret in a correct and appropriate way also the time-reverse of a quantum 
process (and thus also of the instantaneous communication between subatomic particles) a symmetry 
in time in quantum mechanics is needed, a symmetrized reformulation of bohmian mechanics is 
introduced and analyzed.  
 
 

French Abstract 
La non-localité quantique peut être difficilement comprise et expliquée en partant de l’idée que la 
variété caractéristique de l’espace-temps de la relativité spéciale est une entité fondamentale; elle est 
due à un potentiel quantique qui est équivalent à une action instantanée de type spatial entre les 
particules considérées. En vertu des caractéristiques du potentiel quantique, un nouvel ordre doit être 
introduit afin de comprendre les phénomènes quantiques, en particulier, la non-localité quantique. On 
peut dire que dans ce nouvel ordre, les particules subatomiques seront instantanément reliées à 
travers l’espace qui fonctionne comme un médiateur immédiat d’information entre elles. Vu que pour 
pouvoir interpréter de manière correcte et appropriée aussi le temps inversé d’un procédé quantique, 
(et par conséquence aussi la communication instantanée entre les particules subatomiques), on a 
besoin d’une symétrie du temps dans la mécanique quantique, une reformulation symétrisée de la 
mécanique de Bohm est introduite et analysée.  
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1. Introduction 

Quantum mechanics is the fundamental theory of natural phenomena. 
However, despite its incredible successes on the predictive point of view, this theory 
is plagued by several problems of interpretation as regards what it says about the 
world )1( . There are aspects of this theory which make it seem exotic and mysterious, 
far away from common sense. Among them, the most surprising aspect is certainly 
represented by quantum non-locality and entanglement, by the non separability of 
subatomic particles.  

To be explicit and illustrate quantum non locality, let us consider an example 
given by Bohm )2(  in 1951, in which we have a physical system given by a molecule 
of total spin 0 composed by two spin ½ atoms in a singlet state: 
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. Given such a state, suppose we 

perform a spin measurement on system 1 in the z-direction and that we obtain the 
result spin up. Then, according to the usual quantum theory, the wave function (1) 
reduces to the first of its summands:  

−+→ vuff 21ψ  (2).  
As a result, the final wave function is factorizable and we know the state of the 
unmeasured system 2, namely −v  which indicates that the system 2 has spin down. 
But this outcome depends on the kind of measurement carried out on particle 1. By 
performing different types of measurement on atom 1 we will bring about distinct 
states of the atom 2, and this means that as regards spin measurements there are 
correlations between the two atoms. Although the two partial systems (the atom A 
and the atom B) are clearly separated in space (in the conventional sense that the 
outcomes of position measurements on the two systems are widely separated), 
indeed they cannot be considered physically separated because the state of the 
atom 2 is instantaneously influenced by the kind of measurements made on the atom 
1. Bohm’s example shows clearly that entanglement in spin space implies non-
locality and non-separability in Euclidean three-dimensional space: this comes about 
because the spin measurements couple the spin and space variables.  
 
  
2. Quantum non-locality and bohmian quantum potential 

Quantum non-locality can be easily explained in the context of Bohm’s version 
of quantum mechanics. In de Broglie-Bohm’s pilot wave theory the non-local 
correlations concerning microscopic phenomena are tied to the action of a new form 
of potential, the quantum potential.  

In his classic works of 1952 and 1953 )4(),3(
 Bohm showed that if we interpret 

each individual physical system as composed by a corpuscle and a wave guiding it, 
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the movement of the corpuscle under the guide of the wave happens in agreement 
with a law of motion which assumes the following form  
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(where R is the amplitude and S is the phase of the wave function, h  is Planck’s 
reduced constant, m is the mass of the particle and V is the classic potential). This 
equation is equal to the classical equation of Hamilton-Jacobi except for the 
appearance of the additional term  
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having the dimension of an energy and containing Planck constant and therefore 
appropriately defined quantum potential. The equation of motion of the particle can 
be expressed also in the form  
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 (5),  

thus equal to Newton’s second law of classical mechanics, always with the additional 
term Q of quantum potential. The movement of an elementary particle, according to 
Bohm’s pilot wave theory, is thus tied to a total force which is given by the sum of two 
terms: a classical force (derived from a classic potential) and a quantum force 
(derived just from the quantum potential) )6(),5( . Equations (3) and (5) could give the 
impression that we have a return to a classical account of quantum processes. 
However, this is not the case.  

Central in order to understand the features of bohmian mechanics is the 
appearance of the quantum potential. If we examine its form, we may note that it 
does not have the usual properties expected from a classic potential. Relation (4) 
tells us clearly that the quantum potential depends on how the amplitude of the wave 
function varies in space. The presence of Laplace operator indicates that the action 
of this potential is like-space, namely creates onto the particle a non-local, 
instantaneous action. The appearance of the amplitude of the wave function in the 
denominator also explains why the quantum potential can produce strong long-range 
effects that do not necessarily fall off with distance and so the typical properties of 
entangled wave functions. Thus even though the wave function spreads out, the 
effects of the quantum potential need not necessarily decrease. This is just the type 
of behaviour required to explain the EPR paradox.  

If we examine the expression of the quantum potential in the two-slit 
experiment, we find that it depends on the width of the slits, their distance apart and 
the momentum of the particle. In other words, it has a contextual nature, namely 
brings a global information on the process and its environment. It contains an 
instantaneous information about the overall experimental arrangement. Moreover, 
this information can be regarded as being active in the sense that it modifies the 
behaviour of the particle. In a double-slit experiment, for example, if one of the two 
slits is closed the quantum potential changes, and this information arrives 
instantaneously to the particle, which behaves as a consequence.  

Now the fact that the quantum potential produces a like-space and an active 
information means that it cannot be seen as an external entity in space but as an 
entity which contains a spatial information, as an entity which represents space. On 
the basis of the fact that the quantum potential has an instantaneous action and 
contains an active information about the environment, one can say that it is space the 
medium responsible of the behaviour of quantum particles. Considering the double-
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slit experiment, the information that quantum potential transmits to the particle is 
instantaneous just because it is a spatial information, is linked to physical space.  

It is also important to underline that in the standard interpretation of quantum 
mechanics the non-locality of quantum processes is an unexpected host and often 
does not receive the adequate attention. On the other hand, Bohm was the first to put 
in evidence in a clear way the origin of quantum non-locality. Bohm’s theory manages 
to make manifest this essential feature of quantum mechanics, just by means of the 
quantum potential. In particular, taking into consideration a many-body system, 
Bohm’s theory shows clearly that the quantum potential acting on each particle is a 
function of the positions of all the other particles and thus in general does not 
decrease with distance. As a consequence, the contribution to the total force acting 
on the i-th particle coming from the quantum potential, i.e. Qi∇ , does not necessarily 
fall off with distance and indeed the forces between two particles of a many-body 
system may become stronger, even if ψ  may decrease in this limit. The equation of 

motion of the i-th particle in the limit of big separations assumes the form 
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and thus depends on the coordinates of all the n particles of the system: this 
determines just non-local correlations in a many-body system. In virtue of the 
features of the quantum potential, Bohm’s theory turns out to be intrinsically olistic, in 
which “the whole is more than the sum of the parts”. It is a merit of the pilot wave 
theory to show in such a direct way this property that, according to Bohm, “… is the 
newest and most fundamental ontological characteristic implied by quantum 
theory” )7( .  

The appearance of non-separability and non-locality in the Bohm approach led 
Bell to his famous inequalities )8( . Of course non-locality is not a feature that fits 
comfortably with the mechanical paradigm, but it was this feature that led Bohm to 
the conclusion that his approach was not mechanical. In this regard more details can 
be found in Bohm and Hiley (1993) )9( .  

Detailed investigations into these questions in the Bohm approach and in the 
review of other approaches to quantum mechanics led to the idea that the Cartesian 
order could no longer be used to explain quantum processes, in particular quantum 
non-locality. What is needed is a radically new order in which to understand quantum 
phenomena.  

In this regard, already in 1960 Geoffrey Chew )10(  pointed out that there is no 
necessity to explain quantum processes on the basis of the space-time manifold. 
This consideration of Chew appears legitimate if it is applied to the interpretation of 
EPR-type experiments. One encounters problems in explaining the instantaneous 
communication between subatomic particles if assumes that space-time is a 
fundamental entity. If space-time is assumed as primary, then, ipso facto, locality 
should be absolute. Instead quantum particles show non-local correlations. 

In 1980 Bohm suggested that the new order in which to understand quantum 
phenomena would be based on process and called this new order the implicate 
order: the quantum potential must be considered an active information source linked 
to a quantum background, namely just the implicate order. The intention behind the 
introduction of this new order was simply to develop new physical theories together 
with the appropriate mathematical formalism that will lead to new insights into the 
behaviour of matter and ultimately to new experimental tests.  
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Following this research line, Hiley recently suggested that quantum processes 
evolve not in space-time but in a more general space called pre-space, which is not 
subjected to the Cartesian division between res extensa and res cogitans. In this 
view, the space-time of the classical world would be some statistical approximation 
and not all quantum processes can be projected into this space without producing the 
familiar paradoxes, including non-separability and non-locality )11( . According to 
Hiley’s research, quantum domain is to be regarded as a structure or order evolving 
in space-time, but space-time is to be regarded as a higher order abstraction arising 
from this process involving events and abstracted notions of space or space-like 
points )12( . These points are active in the sense that each point is a process that 
preserves its identity and its incidence relations with neighbouring points. Thus points 
themselves are not static concepts, but part of the underlying process. In 1993 Hiley 
and Monk showed that this could be realized in a very simple algebraic structure, 
namely the discrete Weyl algebra )13( . According to Hiley, process must be taken as 
fundamental while space-time, fields and matter can be derived from this basic 
process on the basis of the idea that process is describable by elements of an 
algebra and the relevant structure process is defined by the algebra itself. In 
particular, Hiley used the sympletic Clifford algebra which can be constructed from 
boson annihilation and creation operators. This algebra contains the Heisenberg 
algebra, suggesting thus it will strongly feature in a process orientated approach to 
quantum theory. It was these possibilities that led Hiley and Monk in 1993 to explore 
a simpler finite structure, the discrete Weyl algebra.  

In synthesis, the basic underlying assumption of Hiley’s general approach is 
that the ontology is based on a process that cannot be described explicitly. It can 
only be described implicitly, hence the terminology “implicate order”. This implicate 
order is a structure of relationships and is not some woolly metaphysical construction, 
it is a precise description of the underlying process, mathematically expressed in 
terms of a non-commuting algebra. This process allows partial views because nature 
is basically participatory.  

The considerations of Chew, the research of Bohm and Hiley clearly show the 
legitimacy to understand and explain quantum non-locality on the basis of 
approaches different from the space-time manifold. The space-time manifold 
characteristic of special relativity cannot be considered as basic and fundamental 
because does not seem compatible with the instantaneous communication between 
subatomic particles. Here, in virtue of the peculiar characteristics of quantum  
potential, we suggest therefore the idea that bohmian implicate order (or analogously 
Hiley’s pre-space and notion of underlying process of quantum phenomena) can be 
assimilated to the idea of physical space as an immediate information medium.  

The features of quantum potential imply that space has clearly an important 
role in determining the motion of a subatomic particle. On the basis of the formula (4), 
one can say that it is space the medium responsible of the behaviour of quantum 
particles. One can say that the quantum potential (4) contains the idea of space as 
an immediate information medium in an implicit way.  

In other words, when one takes into consideration an atomic or subatomic 
process (such as for example the case of an EPR-type experiment, of two subatomic 
particles, before joined and then separated and carried away at big distances one 
from the other), physical space assumes the special “state” represented by quantum 
potential, and this allows an instantaneous communication between the particles into 
consideration )14( . If we take under examination the situation considered by Bohm in 
1951 (illustrated in chapter 1) we can say that it is the state of space in the form of 
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the quantum potential which produces an instantaneous connection between the two 
particles as regards the spin measurements: by disturbing system 1, system 2 may 
indeed be instantaneously influenced despite the big distance separating the two 
systems thanks to the features of space which put them in an immediate 
communication. 

Therefore, space allows us to explain why and in what sense, in an EPR 
experiment, two particles coming from the same source and which go away, remain 
joined by a mysterious link, why and in what sense if we intervene on one of two 
particles A and B, also the other feels the effects instantaneously despite the relevant 
distances separating it. In virtue of the features of quantum potential, the 
instantaneous connection between two quantum particles also when they are at big 
distance can be seen as an effect of space. Information does not travel between 
particle A and particle B, information between particle A and particle B has not speed: 
by means of the quantum potential, space itself is informing particle A about the 
behaviour of particle B and opposite )15( . 

In synthesis, one can say that in EPR experiment quantum potential makes 
physical space an “immediate information medium” between elementary particles. In 
EPR experiment the behaviour of a subatomic particle is influenced instantaneously 
by the other particle thanks to space which functions as an immediate information 
medium; the information between the two particles is instantaneously transmitted by 
space. Through the action of quantum potential physical space keeps two elementary 
particles in an immediate contact.  
 
 
3. A time-symmetric formulation of bohmian quantum mechanics 

According to the interpretation proposed in the previous chapter, the 
instantaneous, non local communication between two quantum particles can be seen 
as a consequence of the fact that the information between the two particles has not 
speed, that physical space assumes the role of a direct, immediate information 
medium between them (in the form of the quantum potential). Moreover, it is 
important to underline that the instantaneous communication between two particles in 
an EPR-type experiment is characterized by a sort of symmetry: it occurs both if one 
intervenes on one particle and if one intervenes on the other, in both cases the same 
type of process happens and always thanks to space which functions as an 
immediate information medium. Now, if we imagine to film the process of an 
instantaneous communication between two subatomic particles backwards, namely 
inverting the sign of time, we should expect to see what really happened. Inverting 
the sign of time, there is however no guarantee that we obtain something that 
corresponds to what physically happens. It is true that the communication between 
the two particles is immediate, but the wave function of them depend in general also 
on time. However the standard quantum laws are not time-symmetric and therefore 
inverting the sign of time, the filming of the process could not correspond to what 
physically happens. Although the quantum potential (4) has a like-space, an 
instantaneous action, however it comes from Schrödinger equation which is not time-
symmetric and therefore its expression cannot be considered completely satisfactory 
just because it can meet problems inverting the sign of time. Also the original 
bohmian approach, although allows us to explain quantum non-locality, cannot be 
considered completely convincing because it is not time-symmetric.  

On the basis of these considerations, in order to interpret in the correct way, 
also in symmetric terms in the exchange of t in –t, the instantaneous communication 
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between subatomic particles and thus in order to reproduce in the appropriate way 
the interpretation of physical space as an immediate information medium, in quantum 
theory in line of principle a symmetry in time is required. In this chapter we propose to 
introduce a new symmetrized version of quantum potential, able to explain a 
symmetric and instantaneous communication and therefore to represent a good 
candidate for the state of the physical space as an immediate information medium.  

In this regard, let us start taking into consideration standard quantum 
mechanics. The standard interpretation of quantum mechanics is not time-symmetric. 
The asymmetry of the standard interpretation is somewhat evident in the Schrödinger 
equation itself  

)()( tHt
t

i ψψ =
∂

∂
h  (7),  

because the substitution tt −→  yields a different equation. A more dramatic 
asymmetry concerns the collapse postulate; upon measurement, a wave function 
collapses to a pure state only in the forward-time direction. The time-reverse of this 
process is not permitted. The standard interpretation predicts therefore a dramatic 
disagreement between forward-time and reverse-time interpretation of the same 
physical event. This fact is evident also as regards EPR experiment and quantum 
non-locality. In fact, according to the standard interpretation the time-reverse of the 
process of instantaneous communication of two subatomic particles in EPR 
experiment could not correspond to what happens. Taking into account the 
considerations made in the previous chapter about the idea of space as a direct, 
immediate information medium between elementary particles, the fact that according 
to the standard version the time-reverse of the process of instantaneous 
communication of two subatomic particles is not interpreted in the correct way has an 
important consequence. In fact, one can deduce immediately that the standard 
interpretation of quantum mechanics cannot be considered compatible with the idea 
of physical space as a “direct information medium” between elementary particles. 
This fact provides an important motivation to search for an interpretation of quantum 
mechanics in which a forward-time and reversed-time perspective of the same 
physical events would be interpreted in the same manner and thus in which the idea 
of space as a direct information medium would be reproduced in the correct way. 
One can address this problem by taking into consideration the time-symmetric 
formulation of quantum mechanics recently developed by Wharton. Wharton’s model 
consists in applying two consecutive boundary conditions onto solutions of a time-
symmetrized wave equation )16( . In synthesis, the proposal of Wharton is based on 
the following three postulates:  

1. The wave function is no longer a solution of the Schrödinger 
equation, but instead is the solution )(tC  to the time-symmetric 

equation  
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                Schrödinger equation, )(tφ  is the solution to the time-reversed  
                Schrödinger equation.  
2. Each measurement MQ  of a wave function (at some time 0t ) 

imposes the result of that measurement as an initial boundary 
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condition on φψ TC +=+ , and as a final boundary condition on 

φψ TC −=−  where T is the time-reversal operator. In other 

words, instead of a collapse postulate, this formulation imposes a 
boundary condition on the wave function at every measurement, 
equal to the outcome of that measurement.  

3. Instead of the standard probability formula, the relative probability of 
any complete measurement sequence on a wave function )(tC  at 

times nttt ,...,, 21  is  
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                where N>1 and each measurement is constrained by the boundary  
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This proposal of Wharton is an interesting attempt to build a fully time-
symmetric formulation of quantum mechanics, without requiring a time-asymmetric 
collapse of the wave function upon measurement. Therefore it can be considered a 
starting-point in order to interpret in the correct manner both the forward-time and the 
reversed-time perspectives of the same physical event. In particular, it can be 
considered the starting point to interpret in the correct way the time-reverse process 
of the instantaneous communication of two particles in EPR-type experiments.  

Now, since non-locality is due to bohmian quantum potential, to the like-space, 
instantaneous action of the quantum potential, in order to assure the symmetry in 
time needed to interpret also the time-reverse process in the correct manner and thus 
to find the most appropriate candidate for the state of space as a direct information 
medium between subatomic particles, we can reformulate the bohmian mechanics for 
the time-symmetric equation (8). In this regard, just like in the original bohmian 
theory, we decompose the time-symmetric equation (8) into two real equations, by 
expressing the wave functions ψ  and φ  in polar form:  

h/
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where 1R  and 2R  are real amplitude functions and 1S  and 2S  are real phase 
functions. Inserting (10) and (11) into (8) and separating into real and imaginary parts 
we obtain the following equations for the fields 1R , 2R , 1S  and 2S . The real part gives 
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and the imaginary part may be written in the form  
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We obtain in this way a symmetrized extension of bohmian mechanics which is 
characterized by a symmetrized quantum potential at two components of the form 
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where 1R  is the amplitude function of ψ  and 2R  is the amplitude function of φ . The 
symmetrized quantum potential (14) can be considered the starting-point to have a 
symmetry in time in bohmian quantum mechanics. It provides a coherent description 
of the quantum world in the bohmian approach avoiding the dramatic disagreement 
between forward-time and time-reverse of the same physical process.  

Let us examine now in more detail the form of this quantum potential. As one 
can easily see, just like the quantum potential of the original Bohm theory, also the 
symmetrized quantum potential (14) has an action which is stronger when the mass 
is more comparable with Planck constant, and Laplace operator indicates that the 
action of this potential is like-space, non-local, instantaneous. The difference from the 
original bohmian mechanics lies in the fact that (14) has two components, namely 
depends also on the wave function concerning the time-reverse process, and 
therefore its space-like, non-local, instantaneous action is predicted not only by the 
forward-time process but also by the time-reverse process (and this implies therefore 
that the process of the instantaneous action between two subatomic particles can be 
interpreted in the correct way also exchanging t in –t). More precisely, if we analize 
the mathematical expression of the symmetrized quantum potential (14) we can 

make the following important considerations. The first component, 
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indicates that in the forward-time process the action of the quantum potential on the 
particle under consideration is instantaneous, space-like; the second component, 
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, allows us to reproduce in the correct way also the time-reverse of the 

process of the instantaneous action of the quantum potential on that particle.  
Moreover, it is important to underline that the symmetrized quantum potential 

has a crucial role inside the mathematical formalism of the theory. In fact, in analogy 
to what happens in bohmian original theory, in the symmetrized extension the 
symmetrized quantum potential (14) must not be considered a term ad hoc. It plays a 
fundamental role in the symmetrized quantum formalism: in the formal plant of the 
symmetrized Bohm’s theory it emerges directly from the symmetrized Schrödinger 
equation. Without the term (14) the total energy of the physical system would not be 
conserved. In fact, equation (12) can also be written in the equivalent form  
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which can be seen as a real energy conservation law for the forward-time and the 
reverse-time process in symmetrized quantum mechanics: here one can easily see 
that without the quantum potential  
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energy would not be conserved. Equation (15) tells us also that the reverse-time of a 
physical process is characterized by a classic potential and a quantum potential 
which are endowed with an opposed sign with respect to the corresponding 
potentials characterizing the forward-time process.  

It is also interesting to observe that inside this time-symmetric extension of 
bohmian mechanics the correspondence principle becomes  
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 (16).  

In this classical limit we have the classical Hamilton-Jacobi equation at two 
components:  
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 (17)  

which shows us just that the time-reverse of the classical process involves a classic 
potential which is endowed with an opposed sign with respect to the classic potential 
characterizing the forward-time process.  

Moreover, following the idea originally proposed by Bohm and Hiley in 1984, 
also the quantum potential (14) can be interpreted as a sort of “information potential”: 
the particles in their movement are guided by the quantum potential just as a ship at 
automatic pilot can be handled by radar waves of much less energy than that of the 
ship and this concerns also the time-reverse of this process in the sense that also the 
time-reverse of this process reproduces what happens as regards the transmission of 
the information. On the basis of this interpretation, the results of double-slit 
experiment are explained by saying that the quantum potential (14) contains an 
active information, for example about the slits, and that this information manifests 
itself in the particles’ motions and the time-reverse of these motions can be explained 
in the same, correct way, namely through the idea of the active information.  

In the case of a many-body system constituted by N particles the symmetrized 
quantum potential becomes  
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 (18).  

The symmetrized quantum potential (18) can explain quantum non-locality in many-
body systems in the correct way (namely also taking into consideration the time-
reverse process): it reproduces the fact that the communication between subatomic 
particles is instantaneous and allows us to interpret in the correct way also the time-
reverse of the process of this instantaneous communication. More precisely, the first 

component, ∑
=

∇
−=

N

i

i

i R

R

m
Q

1 1

1

22

2

h
, explains the instantaneous communication between 
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subatomic particles in many-body systems in the forward-time; the second 

component, ∑
=

∇
−=

N

i

i

i R

R

m
Q

1 2

2

22

2

h
, allows us to reproduce in the correct way the time-

reverse of this instantaneous communication. According to the authors’ point of view, 
this formula (18) can be considered the starting point to develop mathematically the 
interpretation of space as an immediate information medium between elementary 
particles. In other words, we can consider equation (18) as the most adequate 
candidate to present in the correct way the idea of space as a direct information 
medium between elementary particles. It is the quantum potential (18) which can be 
considered the most satisfactory candidate to represent the “special state of physical 
space in the presence of microscopic processes” for many-body systems.  
 
 
4. Conclusions 

The space-time manifold of special relativity cannot be considered primary and 
fundamental in order to understand and explain quantum processes, in particular 
quantum non-locality. A new order is necessary which must take into account that 
non-locality is well explained by the like-space action of quantum potential. One can 
therefore introduce the idea that the instantaneous communication between 
subatomic particles is linked to space which functions as an immediate information 
medium. The most adequate candidate to represent mathematically the idea of space 
as an immediate information medium appears to be the symmetrized quantum 
potential. In the presence of subatomic particles, space assumes the special state 
represented by the symmetrized quantum potential which produces an instantaneous 
communication between them and allows us to interpret in a correct and appropriate 
way both the forward-time and the time-reverse of the same physical process.  
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